
For Global Technical Committee Governance Internal Use Only
Submission Date October 28, 2016 Control Number

Submission Status Final Ratified Date
Primary Contact Person Charles Kilkenny Release Identifier

 Copyright, 2018, FIX Protocol, Limited
Revision 1.0

Global Technical Committee

Stunnel Implementation Guide for FIX
Applications

July 25, 2017

Revision 1.0

Proposal Status: Final

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 2 of 19

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION
EXCHANGE PROTOCOL (COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED
"AS IS" AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL
MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE
FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR
ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH PERSONS
AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO
ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY
USE OF THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY
LIABILITY FOR DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN
CONNECTION WITH ANY USER'S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF
USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER
ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT
LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY SUCH PERSON
OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED
THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR
SUBMISSION STATUS ON COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED
PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS
DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND
MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT
ANY TIME. THE FPL GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY
IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS
SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FPL
WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN
“WORKS IN PROGRESS”. THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE,
UPON COMPLETION OF REVIEW AND RATIFICATION, AN OFFICIAL STATUS
("APPROVED") OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or
any rights therein).

Copyright 2018 FIX Protocol Limited, all rights reserved.

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 3 of 19

Table of Contents

1 Introduction .. 6

1.1 Overview.. 6
1.2 FIX and TLS Roles ... 6
1.2.1 Deployment ... 6

1.3 Scope ... 8
1.3.1 Out of scope .. 8

1.4 References ... 8
1.4.1 Versions and Updates ... 8

2 Overview of Stunnel Options .. 9
2.1 Connectivity ... 9
2.1.1 Client ... 9

2.1.2 Server .. 10

2.1.3 IP Address or Domain Name ... 10

2.1.4 Socket Options .. 10

2.2 TLS Version .. 10
2.3 Cipher Suites .. 10
2.3.1 Cipher suites for use with certificates... 11

2.3.1 Cipher suites for use with pre-shared keys ... 11

2.4 Authentication Methods ... 12
2.4.1 Public Key Infrastructure (PKI) .. 12

2.4.2 Pre-shared Key Authentication ... 14

2.5 Platform-specific configuration ... 14
2.5.1 Windows ... 14

2.6 Local Administration.. 15
2.6.1 Configuration file .. 15

2.6.2 Local security ... 15

2.6.3 Logging .. 15

3 Use Cases .. 15
3.1 Service defaults ... 15
3.1.1 TLS version .. 15

3.1.2 Cipher suites .. 15

3.2 Mutual authentication using certificates .. 16
3.2.1 Server Configuration ... 16

3.2.2 Client Configuration .. 16

3.3 Using Pre-Shared keys ... 17
3.3.1 Server Configuration ... 17

3.3.2 Client Configuration .. 17

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 4 of 19

3.4 Using FIX credentials and server certificates .. 17
3.4.1 Server Configuration ... 18

3.4.2 Client Configuration .. 18

4 Appendix ... 19
4.1 Generating a self-signed certificate .. 19
4.2 Listing supported ciphers .. 19
4.3 Downloading a certificate ... 19

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 5 of 19

Document History
Revision Date Author Revision Comments

0.1 4/14/2017 Don Mendelson

Silver Flash LLC

DRAFT revision 1

0.2 4/21/2017 Don Mendelson

Silver Flash LLC

DRAFT revision 2

0.3 6/02/2017 Don Mendelson

Silver Flash LLC

Vladimir Coxall

Itiviti USA

DRAFT revision 3

0.4 7/06/2017 Don Mendelson

Silver Flash LLC

DRAFT revision 4

0.5 7/17/2017 Don Mendelson

Silver Flash LLC

DRAFT revision 5

0.6 7/25/2017 Don Mendelson

Silver Flash LLC

DRAFT revision 6

1.0 1/24/2018 Alex Pollard

GTC PM

Updated to "Final" revision

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 6 of 19

1 Introduction

1.1 Overview
This guide is a supplement to the FIXS Technical Standard for usage of Stunnel. Stunnel is a
proxy for Transport Layer Security (TLS) communications. This guide is intended to cover use
cases where an application is FIX-protocol aware but either does not have TLS capabilities or for
which it is desirable to offload TLS operations to a proxy. One motivation for using a proxy is to
terminate external communications in a DMZ subnetwork while protecting applications such as
FIX engines within an internal local area network. The communications between the proxy and
the FIX engine can then flow over an ordinary TCP transport.
Note: many of the names associated with secure sockets still contain “SSL”, but the SSL
protocol has been superseded by TLS.

1.2 FIX and TLS Roles
In FIX4 and FIXT protocols, each peer plays one of two roles. In the initiator role, a peer
initiates the TCP transport connection to a remote host, and once the TCP handshake is
complete, it sends a FIX Logon message to the remote side. In the acceptor role, a FIX engine
listens on a port for incoming TCP connections. After accepting a new connection, it waits for a
FIX Logon and when it is received, it authenticates the user and continues the FIX session.
To add TLS to a FIX session, both peers must implement the protocol in an interoperable way.
With or without TLS, the process begins with a TCP handshake between initiator and acceptor.
Thereafter, a TLS handshake begins. There are two roles in TLS, client and server. The initiator
of the FIX-over-TCP connection acts as a TLS client, and the FIX acceptor acts as a TLS server.
TLS always authenticates the server using cryptographic methods. Mutual authentication is
optional in TLS. If TLS client authentication is performed, then authentication at the FIX level is
redundant since identity is already proven. On the other hand, if one-way authentication is
performed in TLS, then the FIX initiator is obligated to send credentials in the FIX Logon
message to prove identity at the application layer.

1.2.1 Deployment
Stunnel is distributed as an executable for Windows, Android or Linux. Downloads are available
at https://www.stunnel.org/downloads.html. The software-only implementation depends on
OpenSSL, available in GitHub as source at https://github.com/openssl/openssl. Hardware
implementations of encryption engines are also available from product vendors.
A local FIX engine may be configured for one or more FIX sessions. By using Stunnel, the FIX
application needs no knowledge of TLS or cryptographic keys, yet its communications to the
remote host is secure. All the TLS configuration is in Stunnel.

1.2.1.1 Client Deployment
In the initiator role, a FIX application opens a TCP connection to Stunnel. This triggers Stunnel
to open a client-mode TLS session with the remote host. When the TLS handshake is complete,
Stunnel forwards any messages received on the local TCP connection to the remote host.
The only possible security configuration in the FIX application consists of FIX credentials to be
sent in the Logon message if mutual authentication in TLS is not configured.

https://www.stunnel.org/downloads.html
https://github.com/openssl/openssl

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 7 of 19

The diagrams below show typical deployments of a FIX application connecting to a remote
server via Stunnel as a proxy.

Figure 1Typical client deployment

1.1.1.1. Server Deployment
When a FIX application acts in the acceptor role, Stunnel acts as a TLS server. When a remote
client and opens a TLS session to Stunnel, Stunnel connects to the local FIX engine’s TCP listen
port. All messages received from the remote client are forwarded to the local FIX engine, and
vice versa.
A typical server configuration is shown below.

Figure 2Typical server deployment

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 8 of 19

1.3 Scope
The guide is limited to the protocol stack of FIX over TCP/IP with TLS and does not cover every
feature of Stunnel. This guide makes recommendations about Stunnel configurations that
promote security and interoperability on the wire.
This configuration guide applies mainly to software implementation of TLS mostly commonly
used with Stunnel, which is the OpenSSL library.

1.3.1 Out of scope
Stunnel also supports hardware TLS engines, but their configuration may be proprietary product-
specific, so that is out of scope in this guide.
Network management, firewalls, and perimeter protection are out of scope.

1.4 References
FIX-over-TLS (FIXS) Technical Standard Requirements and Guidance 2016, FIX Protocol Ltd.
Stunnel: Documentation, https://www.stunnel.org/docs.html. Software author: Michał Trojnara.
Note that Stunnel is free software but is not open source; the author retains the copyright.
OpenSSL:Documentation, https://www.openssl.org/docs/ Cryptography and SSL/TLS Toolkit
used by stunnel. Free and open source. The OpenSSL toolkit stays under a double license, i.e.
both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit.
It is up to individual firms to decide whether software and licenses are suitable for their needs.

1.4.1 Versions and Updates
This guide is predicated on current versions of software as of the time of writing, Stunnel version
5.41 and OpenSSL version 1.1.0.
It is incumbent on users to stay current as security vulnerabilities are periodically discovered.
Stunnel provides a mailing list for critical announcements and version updates at
https://www.stunnel.org/cgi-bin/mailman/listinfo/stunnel-announce.

https://www.stunnel.org/docs.html
https://www.openssl.org/docs/
https://www.stunnel.org/cgi-bin/mailman/listinfo/stunnel-announce

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 9 of 19

2 Overview of Stunnel Options
The following options apply to all use cases.
Category Major options Section reference
Connectivity connect

accept

protocol=connect

Connectivity

TLS sslVersion TLS Version

Cipher suites ciphers Cipher suites for use with
certificates
Cipher suites for use with
pre-shared keys

Authentication cert

requireCert

verifyChain

verifyPeer

Public Key Infrastructure
(PKI)

 PSKidentity

PSKsecrets

Pre-shared Key
Authentication

Local administration output Local Administration

2.1 Connectivity

2.1.1 Client
The connect option is used to specify a remote server address for client connectivity.

connect = <[HOST:]PORT>

If host is not supplied, then localhost is used.

2.1.1.2 HTTP Connect
Stunnel supports HTTP Connect (RFC 2817) for client connection only. It makes it possible to
tunnel through a firewall to an HTTP proxy that establishes a TCP connection to the ultimate
destination. Traffic between Stunnel and the proxy is packaged as HTTP GET and POST
requests and responses. HTTP Connect is only needed if the network restricts outgoing
connections to HTTP protocol or its well-known port. There is no benefit otherwise since it
introduces another network hop to reach the final destination.

; the address of the HTTP proxy
connect = <[HOST:]PORT>
protocol = connect
; the address of the remote server
protocolHost = <HOST:PORT>

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 10 of 19

; username and password for basic authentication to the proxy1
protocolUsername = <USERNAME>
protocolPassword = <PASSWORD>

2.1.2 Server
The accept option is used listen for connections by clients.

accept = [HOST:]PORT

If host is not supplied, then the server listens to the specified port on all network interfaces.

2.1.3 IP Address or Domain Name
A host may be specified to clients either as an IP address or a domain name may be provided.
Some private networks do not provide DNS. A domain name has the possible advantage of
location independence, but on the other hand, DNS can be an attack vector for denial-of-service
attacks.

2.1.4 Socket Options
For FIX, it is recommended to disable the Nagle algorithm of TCP to reduce latency.

; global options for accept/local/remote sockets
socket=a:TCP_NODELAY=1
socket=l:TCP_NODELAY=1
socket=r:TCP_NODELAY=1

2.2 TLS Version
Stunnel configuration should conform to the minimum TLS version recommended by the FIXS
Technical Standard. Currently, only TLS 1.2 is recommended.

sslVersion = TLSv1.2

2.3 Cipher Suites
Use the cipher suites recommended by the FIXS Technical Standard. This is configured in
Stunnel with a service-level option, where CIPHER_LIST is a colon-delimited list of cipher suite
names:

ciphers = <CIPHER_LIST>

The list of enabled cipher suites is transmitted from client to server in the order that they are
configured in Stunnel, and in accordance with the TLS protocol, the list is in order of preference.
The server will accept the most preferred cipher suite that it has in common with the client.
OpenSSL uses non-standard cipher suite names for configuration. Each name is a combination
key exchange, encryption and message digest algorithms. (Within the TLS protocol, cipher suites
are designated on the wire by a two-byte code, not the names listed below. Although its
configuration names are non-standard, OpenSSL translates its names to the standard codes. See

1 NTLM authentication is also supported on Windows only.

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 11 of 19

https://tools.ietf.org/html/rfc5246#page-75 or https://www.iana.org/assignments/tls-
parameters/tls-parameters.xhtml for the codes used in TLS 1.2.)

2.3.1 Cipher suites for use with certificates
Standard cipher suite name OpenSSL name Code
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE-RSA-AES128-

SHA256
0x00,0x67

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DHE-RSA-AES128-
GCM-SHA256

0x00,0x9E

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 DHE-RSA-AES256-
SHA256

0x00,0x6B

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DHE-RSA-AES256-
GCM-SHA384

0x00,0x9F

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ECDHE-ECDSA-
AES128-SHA256

0xC0,0x23

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ECDHE-ECDSA-
AES128-GCM-
SHA256

0xC0,0x2B

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ECDHE-ECDSA-
AES256-SHA384

0xC0,0x24

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDHE-ECDSA-
AES256-GCM-
SHA384

0xC0,0x2C

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ECDHE-RSA-
AES128-SHA256

0xC0,0x27

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ECDHE-RSA-
AES128-GCM-
SHA256

0xC0,0x2F

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 ECDHE-RSA-
AES256-SHA384

0xC0,0x28

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDHE-RSA-
AES256-GCM-
SHA384

0xC0,0x30

2.3.1 Cipher suites for use with pre-shared keys
Standard cipher suite name OpenSSL name Code
TLS_DHE_PSK_WITH_AES_128_CBC_SHA PSK-AES128-CBC-SHA 0x00,0x90

TLS_DHE_PSK_WITH_AES_256_CBC_SHA PSK-AES256-CBC-SHA 0x00,0x91

https://tools.ietf.org/html/rfc5246#page-75
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 12 of 19

2.4 Authentication Methods

2.4.1 Public Key Infrastructure (PKI)
PKI is a form of asymmetric encryption used in the authentication of peers in TLS. It uses public
and private keys to encrypt and decrypt data. Keys are issued by certificate authorities in the
form of certificates. X.509 is the prevailing standard for public key certificates.
The remainder of this section pertains only to PKI authentication. See below for PSK as an
alternative.

2.4.1.3 Providing a certificate
A certificate file provides the public key of a party and its chain of certificate authorities. It is
transmitted to a peer during TLS negotiation. A server certificate is always required, while a
client certificate is only needed for mutual authentication.
An X.509 certificate file is configured in Stunnel as follows.

cert = <CERT_FILE>

The private key may be stored in the same file as the certificate. Alternatively, the corresponding
private key may be stored in its own file:

key = <KEY_FILE>

2.4.1.4 Require a peer certificate
An X.509 certificate should always be required by clients from servers. A client certificate is
only required by servers to implement mutual authentication in TLS.
In Stunnel, this is configured with a service-level option:

requireCert = yes

This option is implied by verifyChain or verifyPeer as described below, but it is not an error
if requireCert is also present in those cases.

2.4.1.5 Verify a peer certificate
Two mutually exclusive options are available for certificate verification. One of these options
should always be specified for server certificate verification (client configuration), and for client
verification in the case of mutual authentication (server configuration).

2.4.1.5.1 Verify a chain of trust
This option verifies an entire chain of trust including the peer and its chain of certificate
authorities:

verifyChain = yes

Additionally, one of the following options must be provided with verifyChain to tell the
location of Certificate Authority certificates. The directory /etc/ssl/certs is the
conventional location of a hashed directory containing trusted CA certificates.

CApath = <CA_DIRECTORY>

Or

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 13 of 19

CAfile = <CA_FILE>

The verifyChain option implies requireCert = yes.
One of the checks performed is whether any of the certificates in the chain has expired; no
configuration is needed to activate that check. The verifyChain option should also be used
with one of the methods described below to activate a check for revoked certificates.
Verifying an entire chain has a significant performance cost for a server, so it is generally
recommended to use certificate pinning instead (see below).

2.4.1.5.2 Leaf certificate pinning
This option verifies a peer by storing its certificate on first use or ahead of time and considering
it trusted on subsequent uses. It is less costly than verifying the entire chain each time and avoids
certain vulnerabilities regarding certificate authorities. Subsequent uses match the public key to a
stored value. However, it requires a check to make sure that the subject of the certificate matches
the stored one. The configuration option is:

verifyPeer = yes

Optionally, one or more of the following settings may be added to verify the subject of the
certificate, either by host name, IP address or email address:

checkEmail = <EMAIL>
checkHost = <HOST>
checkIP = <IP>

More than one address may be configured. A certificate is verified successfully if there is at least
one subject match.
The verifyPeer option implies requireCert = yes. The verifyPeer option should be used
with one of the methods described below to activate a check for revoked certificates.

2.4.1.6 Certificate Revocation List (CRL)
Certificates are occasionally revoked by a certificate authority so it is necessary to check whether
a peer certificate is still valid. One technique is to search for a certificate in a locally stored
Certificate Revocation List. Two configuration parameters are available in Stunnel to tell
locations of local CRLs.
To configure the path to locally stored CRL files, set:

CRLpath = <CRL_DIRECTORY>

Alternatively, the path to single CRL file may be given:
CRLfile = <CRL_FILE>

Due to the difficulty of maintain current CRLs for all possible peers and their CAs, it is
recommended that OCSP be used instead (see below).

2.4.1.7 Online Certificate Status Protocol (OCSP)
The relieve users of maintaining CRLs locally, the Online Certificate Status Protocol provides a
means to use an external service to check for certificate revocation. Such a service is called an
OCSP responder.
To configure a specific OCSP responder address:

OCSP = <Responder_URL>

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 14 of 19

The OCSP responder addresses may be derived from AIA (Authority Information Access)
extension of a peer certificate, if present, with this configuration option:

OCSPaia = yes

The primary use of AIA extension is to fetch missing intermediate certificates in a chain of trust.

2.4.2 Pre-shared Key Authentication
A client may be authenticated by a pre-shared secret key (PSK), or shared secret, instead of
installing a certificate on the client side. PSK authentication is implemented with symmetric key
encryption. Both peers must possess the key.
Both client and server installations of Stunnel would enter the same configuration as follows.
Leave requireCert = no by default, and set these options instead:

PSKidentity = <IDENTITY>
PSKsecrets = <KEY_FILE>

Each line of the file should have the following format:
 IDENTITY:KEY
The key is required to be at least 20 characters long. The file should not be world-readable nor
world-writable.

2.5 Platform-specific configuration

2.5.1 Windows
Microsoft CryptoAPI engine allows for authentication with private keys stored in the Windows
certificate store. Each section using this feature needs this option:

engine = capi

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 15 of 19

2.6 Local Administration

2.6.1 Configuration file
Conventionally, the configuration file is named /etc/stunnel/stunnel.conf, but this may be
overridden on the command line. Alternative configuration files are presented below for each use
case.
On UNIX when the 'chroot' option is used, Stunnel will look for all its files (including the
configuration file, certificates, the log file and the pid file) within the chroot jail.

2.6.2 Local security
It is recommended to drop root privileges if Stunnel is started by root.

setuid = nobody
setgid = nogroup

chroot = <DIRECTORY>

; PID file is created inside the chroot jail (if enabled)
pid = /usr/local/var/run/stunnel.pid

2.6.3 Logging
On UNIX, Stunnel logs to Syslog by default. The default log level is “notice”, but it may be
overridden with debug = <LEVEL>.
Logging may be directed to a file as follows (required on Windows):

output = /usr/local/var/log/stunnel.log

3 Use Cases
See the main FIX-over-TLS document for a full explanation of the use cases described below.

3.1 Service defaults
The following options apply to all configurations.

3.1.1 TLS version
Leave the global options and service defaults listed in the Stunnel sample configuration file,
except for the following.
Change the TLS version configuration to enable only the recommended TLS version.

sslVersion = TLSv1.2

3.1.2 Cipher suites
By default, all cipher suites enabled in the underlying engine are available. TLS negotiates
between client and server to select one of the suites that are supported by both peers. Therefore,
the list is common to client and server configurations.
Override the default cipher suites by explicitly listing suites that are recommended by the current
FIXS Technical Standard and are supported by the Stunnel engine. With the default engine,

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 16 of 19

OpenSSL names must be used. The list of cipher names is colon delimited. The order that cipher
suites are listed determines their priority in negotiation between client and server.

ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384

3.2 Mutual authentication using certificates
In these use cases, both the server and client are authenticated by a certificate in TLS negotiation.

3.2.1 Server Configuration
Cases 1a and 1b: Mutual TLS with Leaf Certificate Pinning

[fix-server]
; Listen port for TLS connection from client
accept = 0.0.0.0:7777
; TCP connection to local FIX engine in the form host:port
connect = 127.0.0.1:3003
cert = /etc/stunnel/stunnel-5.41/stunnel.pem
verifyPeer = yes
CAfile = /etc/ssl/certs/stunnel2.pem
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
sslVersion = TLSv1.2

3.2.2 Client Configuration
Case 1a: Mutual TLS with Leaf Certificate Pinning

[fix-client]
client = yes
accept = 127.0.0.1:2002
connect = 192.168.153.32:7777
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
cert = /etc/stunnel/stunnel2.pem
verifyPeer = yes
CAfile = /etc/ssl/certs/stunnel.pem

Case 1b: Mutual TLS with CA Pinning

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 17 of 19

[fix-client]
client = yes
accept = 127.0.0.1:2002
connect = 192.168.153.32:7777
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
cert = /etc/stunnel/stunnel2.pem
verifyChain = yes
CAfile = /etc/ssl/certs/stunnel.pem

3.3 Using Pre-Shared keys
In this use case, mutual authentication is achieved via a pre-shared key rather than with
certificates.

3.3.1 Server Configuration
Case 2: Mutual TLS with Pre-Shared Keys

[fix-server]
; Listen port for TLS connection from client
accept = 0.0.0.0:7777
; TCP connection to local FIX engine in the form host:port
connect = 127.0.0.1:3003
PSKsecrets = /home/orc/stunnel/stunnel-5.41/psk.txt
ciphers = PSK-AES256-CBC-SHA:PSK-AES128-CBC-SHA
sslVersion = TLSv1.2
requireCert = no

3.3.2 Client Configuration
Case 2: Mutual TLS with Pre-Shared Keys

[fix-client]
client = yes
accept = 127.0.0.1:2002
connect = 192.168.153.32:7777
ciphers = PSK-AES128-CBC-SHA:PSK-AES256-CBC-SHA
PSKsecrets = psk.txt
PSKidentity = clientQA1
sslVersion = TLSv1.2
requireCert = no

3.4 Using FIX credentials and server certificates
In this use case, the server is authenticated by a certificate in TLS negotiation while the client is
authenticated by credentials passed in the FIX Logon message after the TLS session has been
established. Therefore, server authentication is configured in Stunnel, while client authentication
is configured in FIX engines. FIX engine configuration is not shown here since it is different for
each engine.

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 18 of 19

3.4.1 Server Configuration
Cases 3a and 3b: Simple TLS with FIX Credentials for Client

[fix-server]
; Listen port for TLS connection from client
accept = 0.0.0.0:7777
; TCP connection to local FIX engine in the form host:port
connect = 127.0.0.1:3003
cert = /etc/stunnel/stunnel.pem
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
sslVersion = TLSv1.2
requireCert = no

3.4.2 Client Configuration
Case 3a: Simple TLS with Leaf Certificate Pinning

[fix-client]
client = yes
accept = 127.0.0.1:2002
connect = 192.168.153.32:7777
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
verifyPeer = yes
CAfile = /etc/ssl/certs/stunnel.pem

Case 3b: Simple TLS with CA Pinning
[fix-client]
client = yes
accept = 127.0.0.1:2002
connect = 192.168.153.32:7777
ciphers = DHE-RSA-AES128-SHA256:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-GCM-SHA384
verifyChain = yes
CAfile = /etc/ssl/certs/ca-chain.cert.pem
checkIP = 192.168.153.32

Stunnel Implementation Guide for FIX Applications
January 2018 - Revision 1.0

 Copyright, 2018, FIX Protocol Limited Page 19 of 19

4 Appendix
The following utilities are helpful to manage certificates used by Stunnel.

4.1 Generating a self-signed certificate
A self-signed server certificate may be generated with this command line as shown below.
OpenSSL prompts for qualified subject name. It is important that the Common Name (CN)
matches the host as clients will access it, not by a local domain.
This command example places the certificate and private key in separate files. In the example,
the certificate is valid for 365 days.
openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout key.pem
A certificate may be displayed with this command:

openssl x509 -text -in stunnel.pem

4.2 Listing supported ciphers
 Command to show a verbose list of ciphers with high strength:

openssl ciphers -v -s HIGH

4.3 Downloading a certificate
A certificate may be downloaded from a remote server for purposes of certificate pinning.
Portions from the command output can be copied to a certificate file in .pem format.

openssl s_client -showcerts -connect www.example.com:443

	Global Technical Committee
	Stunnel Implementation Guide for FIX Applications
	July 25, 2017
	Revision 1.0
	Proposal Status: Final
	DISCLAIMER
	Table of Contents
	Document History
	1 Introduction
	1.1 Overview
	1.2 FIX and TLS Roles
	1.2.1 Deployment
	1.2.1.1 Client Deployment
	1.1.1.1. Server Deployment

	1.3 Scope
	1.3.1 Out of scope

	1.4 References
	1.4.1 Versions and Updates

	2 Overview of Stunnel Options
	2.1 Connectivity
	2.1.1 Client
	2.1.1.2 HTTP Connect

	2.1.2 Server
	2.1.3 IP Address or Domain Name
	2.1.4 Socket Options

	2.2 TLS Version
	2.3 Cipher Suites
	2.3.1 Cipher suites for use with certificates
	2.3.1 Cipher suites for use with pre-shared keys

	2.4 Authentication Methods
	2.4.1 Public Key Infrastructure (PKI)
	2.4.1.3 Providing a certificate
	2.4.1.4 Require a peer certificate
	2.4.1.5 Verify a peer certificate
	2.4.1.5.1 Verify a chain of trust
	2.4.1.5.2 Leaf certificate pinning

	2.4.1.6 Certificate Revocation List (CRL)
	2.4.1.7 Online Certificate Status Protocol (OCSP)

	2.4.2 Pre-shared Key Authentication

	2.5 Platform-specific configuration
	2.5.1 Windows

	2.6 Local Administration
	2.6.1 Configuration file
	2.6.2 Local security
	2.6.3 Logging

	3 Use Cases
	3.1 Service defaults
	3.1.1 TLS version
	3.1.2 Cipher suites

	3.2 Mutual authentication using certificates
	3.2.1 Server Configuration
	3.2.2 Client Configuration

	3.3 Using Pre-Shared keys
	3.3.1 Server Configuration
	3.3.2 Client Configuration

	3.4 Using FIX credentials and server certificates
	3.4.1 Server Configuration
	3.4.2 Client Configuration

	4 Appendix
	4.1 Generating a self-signed certificate
	4.2 Listing supported ciphers
	4.3 Downloading a certificate

